Đề thi vào lớp 10

     
Lớp 1

Lớp 2

Lớp 2 - liên kết tri thức

Lớp 2 - Chân trời sáng sủa tạo

Lớp 2 - Cánh diều

Tài liệu tham khảo

Lớp 3

Sách giáo khoa

Tài liệu tham khảo

Sách VNEN

Lớp 4

Sách giáo khoa

Sách/Vở bài bác tập

Đề thi

Lớp 5

Sách giáo khoa

Sách/Vở bài xích tập

Đề thi

Lớp 6

Lớp 6 - liên kết tri thức

Lớp 6 - Chân trời sáng sủa tạo

Lớp 6 - Cánh diều

Sách/Vở bài xích tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 7

Sách giáo khoa

Sách/Vở bài bác tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 8

Sách giáo khoa

Sách/Vở bài bác tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 9

Sách giáo khoa

Sách/Vở bài bác tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 10

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 11

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 12

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

IT

Ngữ pháp giờ Anh

Lập trình Java

Phát triển web

Lập trình C, C++, Python

Cơ sở dữ liệu


*

Bộ Đề thi vào lớp 10 môn Toán năm 2022 bao gồm đáp án

Nhằm giúp chúng ta ôn luyện cùng giành được hiệu quả cao vào kì thi tuyển chọn sinh vào lớp 10, videoclipvn.com soạn tuyển tập Đề thi vào lớp 10 môn Toán (có đáp án) theo cấu trúc ra đề Trắc nghiệm - từ luận mới. Cùng rất đó là các dạng bài xích tập hay gồm trong đề thi vào lớp 10 môn Toán với cách thức giải đưa ra tiết. Mong muốn tài liệu này để giúp học sinh ôn luyện, củng cố kỹ năng và kiến thức và chuẩn bị tốt mang lại kì thi tuyển sinh vào lớp 10 môn Toán năm 2022.

Bạn đang xem: Đề thi vào lớp 10

I/ Đề thi môn Toán vào lớp 10 (không chuyên)

Bộ Đề thi vào lớp 10 môn Toán năm 2022 gồm đáp án (Trắc nghiệm - tự luận)

Bộ Đề thi vào lớp 10 môn Toán năm 2022 gồm đáp án (Tự luận)

Bộ Đề thi vào lớp 10 môn Toán TP thành phố hà nội năm 2021 - 2022 có đáp án

II/ Đề thi môn Toán vào lớp 10 (chuyên)

III/ các dạng bài bác tập ôn thi vào lớp 10 môn Toán

Tài liệu ôn thi vào lớp 10 môn Toán

Sở giáo dục đào tạo và Đào tạo .....

Kỳ thi tuyển sinh vào lớp 10

Đề thi môn: Toán

Năm học tập 2021 - 2022

Thời gian: 120 phút

Phần I. Trắc nghiệm (2 điểm)

Câu 1: Điều kiện xác minh của biểu thức

*
là:

A.x ≠ 0 B.x ≥ 1 C.x ≥ 1 hoặc x 2 và mặt đường thẳng (d) y =

*
+ 3

A. (2; 2)B. ( 2; 2) và (0; 0)

C.(-3; ) D.(2; 2) và (-3; )

Câu 5: cực hiếm của k để phương trình x2 + 3x + 2k = 0 bao gồm 2 nghiệm trái vết là:

A. K > 0B. K 2 D. K (2 điểm)

1) Thu gọn gàng biểu thức

*

2) giải phương trình và hệ phương trình sau:

a) 3x2 + 5x - 8 = 0

b) (x2 + 5)2 = 3(x2 + 5) + 4

*

Bài 2: (1,5 điểm) Trong mặt phẳng tọa độ Oxy cho Parabol (P) : y = x2 và mặt đường thẳng (d) :

y = 2mx – 2m + 1

a) với m = -1 , hãy vẽ 2 vật dụng thị hàm số trên và một hệ trục tọa độ

b) search m nhằm (d) cùng (P) cắt nhau trên 2 điểm rõ ràng : A (x1; y1 );B(x2; y2) làm sao cho tổng các tung độ của nhị giao điểm bởi 2 .

Bài 3: (1 điểm) Rút gọn biểu thức sau:

*

Tìm x nhằm A (3,5 điểm) mang lại đường tròn (O) tất cả dây cung CD nỗ lực định. Hotline M là vấn đề nằm ở chính giữa cung nhỏ tuổi CD. Đường kính MN của con đường tròn (O) giảm dây CD tại I. Mang điểm E bất kỳ trên cung to CD, (E không giống C,D,N); ME cắt CD trên K. Những đường trực tiếp NE với CD giảm nhau trên P.

a) minh chứng rằng :Tứ giác IKEN nội tiếp

b) hội chứng minh: EI.MN = NK.ME

c) NK cắt MP trên Q. Hội chứng minh: IK là phân giác của góc EIQ

d) từ bỏ C vẽ đường thẳng vuông góc cùng với EN giảm đường thẳng DE tại H. Minh chứng khi E di động trên cung mập CD (E không giống C, D, N) thì H luôn luôn chạy bên trên một đường cụ định.

Phần I. Trắc nghiệm

1.C2.D3.A4.D
5.B6.A7.D8.B

Phần II. Từ bỏ luận

Bài 1:

*

2) a) 3x2 + 5x - 8 = 0

Δ = 52 - 4.3.(-8) = 121 => √Δ = 11

*

Vậy phương trình đã cho bao gồm tập nghiệm là S =

*

b) (x2 + 3)2 = 3(x2 + 3) + 4

Đặt x2 + 3 = t (t ≥ 3), phương trình đã cho trở nên

t2 - 3t - 4 = 0

Δ = 32 - 4.(-4) = 25> 0

Phương trình gồm 2 nghiệm sáng tỏ :

*

Do t ≥ 3 buộc phải t = 4

Với t = 4, ta có: x2 + 3 = 4 ⇔ x2 = 1 ⇔ x = ±1

Vậy phương trình vẫn cho có 2 nghiệm x = ± 1

*

Bài 2:

Trong khía cạnh phẳng tọa độ Oxy mang lại Parabol (P) : y = x2 và mặt đường thẳng (d) :

y = 2mx – 2m + 1

a) với m = 1; (d): y = 2x – 1

Bảng giá trị

x01
y = 2x – 1-11

(P) : y = x2

Bảng giá bán trị

x -2 -1 0 1 2
y = x2 4 1 0 1 4

Đồ thị hàm số y = x2 là mặt đường parabol nằm phía bên trên trục hoành, nhận Oy làm cho trục đối xứng và nhận điểm O(0; 0) là đỉnh và điểm thấp nhất

*

b) đến Parabol (P) : y = x2 và con đường thẳng (d) :

y = 2mx – 2m + 1

Phương trình hoành độ giao điểm của (P) và (d) là:

x2 = 2mx - 2m + 1

⇔ x2 - 2mx + 2m - 1 = 0

Δ" = mét vuông - (2m - 1)=(m - 1)2

(d) và (P) cắt nhau trên 2 điểm rõ ràng khi còn chỉ khi phương trình hoành độ giao điểm gồm 2 nghiệm riêng biệt

⇔ Δ" > 0 ⇔ (m - 1)2 > 0 ⇔ m ≠ 1

Khi đó (d) cắt (P) tại 2 điểm A(x1, 2mx1 – 2m + 1) ; B ( x2, 2mx2 – 2m + 1)

Theo định lí Vi-et ta có: x1 + x2 = 2m

Từ giả thiết đề bài, tổng những tung độ giao điểm bởi 2 yêu cầu ta có:

2mx1 – 2m + 1 + 2mx2 – 2m + 1 = 2

⇔ 2m (x1 + x2) – 4m + 2 = 2

⇔ 4m2 - 4m = 0 ⇔ 4m(m - 1) = 0

*

Đối chiếu với điều kiện m ≠ 1, thì m = 0 thỏa mãn.

Bài 3:

*

A > 0 ⇔

*
> 0 ⇔ 5 - 5√x > 0 ⇔ √x 0 khi 0 ∠KIN = 90o

Xét tứ giác IKEN có:

∠KIN = 90o

∠KEN = 90o (góc nội tiếp chắn nửa đường tròn)

=> ∠KIN + ∠KEN = 180o

=> Tứ giác IKEN là tứ giác nội tiếp

b) Xét ΔMEI cùng ΔMNK có:

∠NME là góc chung

∠IEM = ∠MNK ( 2 góc nội tiếp cùng chắn cung IK)

=> ΔMEI ∼ ΔMNK (g.g)

*
=>EI.MN = NK.ME

c) Xét tam giác MNP có:

ME ⊥ NP; PI ⊥ MN

ME giao PI trên K

=> K là trực tâm của tam giác MNP

=> ∠NQP = 90o

Xét tứ giác NIQP có:

∠NQP = 90o

∠NIP = 90o

=> 2 đỉnh Q, I cùng nhìn cạnh NP bên dưới 1 góc đều bằng nhau

=> tứ giác NIQP là tứ giác nội tiếp

=> ∠QIP = ∠QNP (2 góc nội tiếp thuộc chắn cung PQ)(1)

Mặt không giống IKEN là tứ giác nội tiếp

=> ∠KIE = ∠KNE (2 góc nội tiếp cùng chắn cung KE)(2)

Từ (1) với (2)

=> ∠QIP = ∠KIE

=> IE là tia phân giác của ∠QIE

d) Ta có:

*

Mà ∠DEM = ∠MEC (2 góc nội tiếp chắn 2 cung bởi nhau)

=> ∠EHC = ∠ECH => ΔEHC cân tại E

=> EN là mặt đường trung trực của CH

Xét đường tròn (O) có: Đường kính OM vuông góc với dây CD trên I

=> NI là mặt đường trung trực của CD => NC = ND

EN là mặt đường trung trực của CH => NC = NH

=> N là trung tâm đường tròn nước ngoài tiếp tam giác DCH

=> H ∈ (N, NC)

Mà N, C thắt chặt và cố định => H thuộc con đường tròn thắt chặt và cố định

Sở giáo dục và Đào sinh sản .....

Xem thêm: Vụ Nữ Tài Xế Nói "Con Người Không Quan Trọng" Hiện Tại Ra Sao?

Kỳ thi tuyển chọn sinh vào lớp 10

Đề thi môn: Toán

Năm học tập 2021 - 2022

Thời gian: 120 phút

Bài 1 : ( 1,5 điểm)

1) Rút gọn gàng biểu thức sau:

*

2) đến biểu thức

*

a) Rút gọn gàng biểu thức M.

b) Tìm các giá trị nguyên của x để giá trị tương xứng của M nguyên.

Bài 2 : ( 1,5 điểm)

1) tìm m nhằm hai phương trình sau có ít nhất một nghiệm chung:

2x2 – (3m + 2)x + 12 = 0

4x2 – (9m – 2)x + 36 = 0

2) Tìm thông số a, b của đường thẳng y = ax + b biết mặt đường thẳng trên đi qua hai điểm là

(1; -1) và (3; 5)

Bài 3 : ( 2,5 điểm)

1) mang đến Phương trình :x2 + (m - 1) x + 5m - 6 = 0

a) giải phương trình khi m = - 1

b) tra cứu m nhằm 2 nghiệm x1 với x2 vừa lòng hệ thức: 4x1 + 3x2 = 1

2) Giải việc sau bằng cách lập phương trình hoặc hệ phương trình

Một công ty vận tải đường bộ điều một số trong những xe thiết lập để chở 90 tấn hàng. Lúc đến kho hàng thì gồm 2 xe cộ bị hỏng bắt buộc để chở không còn số mặt hàng thì từng xe còn lại phải chở thêm 0,5 tấn so với ý định ban đầu. Hỏi số xe được điều mang đến chở sản phẩm là từng nào xe? Biết rằng cân nặng hàng chở sống mỗi xe pháo là như nhau.

Bài 4 : ( 3,5 điểm)

1) cho (O; R), dây BC thắt chặt và cố định không đi qua tâm O, A là điểm bất kì bên trên cung phệ BC. Cha đường cao AD, BE, CF của tam giác ABC giảm nhau trên H.

a) minh chứng tứ giác HDBF, BCEF nội tiếp

b) K là vấn đề đối xứng của A qua O. Chứng minh HK đi qua trung điểm của BC

c) Gỉa sử ∠BAC = 60o. Chứng minh Δ AHO cân nặng

2) Một hình chữ nhật tất cả chiều dài 3 cm, chiều rộng bằng 2 cm, quay hình chữ nhật này một vòng quanh chiều dài của nó được một hình trụ. Tính diện tích s toàn phần của hình trụ.

Bài 5 : ( 1 điểm)

1) mang đến a, b là 2 số thực làm thế nào để cho a3 + b3 = 2. Bệnh minh:

0 √x - 1 ∈ Ư (2)

√x - 1 ∈ ±1; ±2

Ta gồm bảng sau:

√x-1- 2-112
√x-1023
xKhông lâu dài x049

Vậy cùng với x = 0; 4; 9 thì M nhận cực hiếm nguyên.

Bài 2 :

1)

2x2 – (3m + 2)x + 12 = 0

4x2 – (9m – 2)x + 36 = 0

Đặt y = x2,khi kia ta có:

*

Giải (*):

(6 - 3m)x = -12

Phương trình (*) gồm nghiệm 6 - 3m ≠ 0 m ≠ 2

Khi đó, phương trình tất cả nghiệm:

*

Theo cách đặt, ta có: y = x2

*

=>16(m-2) = 16

m = 3

Thay m= 3 vào 2 phương trình ban đầu,ta có:

*

Vậy lúc m =3 thì nhì phương trình trên tất cả nghiệm phổ biến và nghiệm phổ biến là 4

2) Tìm thông số a, b của mặt đường thẳng y = ax + b biết đường thẳng trên đi qua hai điểm là

(1; -1) và (3; 5)

Đường trực tiếp y = ax + b trải qua hai điểm (1; -1) với (3; 5) đề nghị ta có:

*

Vậy đường thẳng đề xuất tìm là y = 2x – 3

Bài 3 :

1) mang lại Phương trình : x2 + (m - 1)x + 5m - 6 = 0

a) lúc m = -1, phương trình trở thành:

x2 - 2x - 11 = 0

Δ" = 1 + 11=12 => √(Δ") = 2√3

Phương trình bao gồm nghiệm:

x1 = 1 + 2√3

x2 = 1 - 2√3

Vậy hệ phương trình bao gồm tập nghiệm là:

S =1 + 2√3; 1 - 2√3

b)

x2 + (m - 1)x + 5m - 6 = 0

Ta có:

Δ = (m - 1)2 - 4(5m - 6)

Δ = m2 - 2m + 1 - 20m + 24 = m2 - 22m + 25

Phương trình gồm hai nghiệm ⇔ Δ ≥ 0 ⇔ m2 - 22m + 25 ≥ 0,(*)

Theo hệ thức Vi-ét ta có:

*

Theo đề bài xích ta có:

4x1 + 3x2 =1 ⇔ x1 + 3(x1 + x2 ) = 1

⇔ x1 + 3(1 - m) = 1

⇔ x1= 3m - 2

=> x2 = 1 - m - x1 = 1 - m - (3m - 2) = 3 - 4m

Do đó ta có:

(3m - 2)(3 - 4m) = 5m - 6

⇔ 9m - 12m2 - 6 + 8m = 5m - 6

⇔ - 12m2 + 12m = 0

⇔ -12m(m - 1) = 0

*

Thay m = 0 vào (*) thấy thảo mãn

Thay m = 1 vào (*) thấy thảo mãn

Vậy tất cả hai quý giá của m vừa lòng bài toán là m = 0 với m = 1.

2)

Gọi con số xe được điều mang đến là x (xe) (x > 0; x ∈ N)

=>Khối lượng mặt hàng mỗi xe cộ chở là:

*
(tấn)

Do bao gồm 2 xe pháo nghỉ yêu cầu mỗi xe sót lại phải chở thêm 0,5 tấn so với ý định nên từng xe đề xuất chở:

*

Khi kia ta có phương trình:

*
.(x-2)=90

=>(180 + x)(x - 2) = 180x

x2 - 2x - 360 = 0

*

Vậy số xe cộ được điều mang đến là 20 xe

Bài 4 :

*

a) Xét tứ giác BDHF có:

∠BDH = 90o (AD là con đường cao)

∠BFH = 90o (CF là mặt đường cao)

=>∠BDH + ∠BFH = 180o

=> Tứ giác BDHF là tứ giác nội tiếp

Xét tứ giác BCEF có:

∠BFC = 90o (CF là mặt đường cao)

∠BEC = 90o (BE là đường cao)

=> 2 đỉnh E với F cùng nhìn cạnh BC bên dưới 1 góc vuông

=> Tứ giác BCEF là tứ giác nội tiếp

b) Ta có:

∠KBA) = 90o (góc nội tiếp chắn nửa con đường tròn)

=>KB⊥AB

Mà CH⊥AB (CH là đường cao)

=> KB // CH

Tương tự:

∠KCA) = 90o (góc nội tiếp chắn nửa mặt đường tròn)

=>KC⊥AC

BH⊥AC (BH là con đường cao)

=> HB // chồng

Xét tứ giác BKCF có:

KB // CH

HB // CK

=> Tứ giác BKCH là hình bình hành

=> nhì đường chéo BC và KH cắt nhau tại trung điểm mỗi đường

=> HK trải qua trung điểm của BC

c) hotline M là trung điểm của BC

Xét tam giác AHK có:

O là trung điểm của AK

M là trung điểm của BC

=> OM là mặt đường trung bình của tam giác AHK

=> OM = AH (1)

ΔBOC cân nặng tại O gồm OM là trung tuyến

=> OM là tia phân giác của ∠BOC

=> ∠MOC = ∠BAC = 60o (= ∠BOC )

Xét tam giác MOC vuông trên M có:

OM = OC.cos⁡(MOC) = OC.cos⁡60o= OC = OA (2)

Từ (1) và (2) => OA = AH => ΔOAH cân tại A

2)

Quay hình chữ nhật vòng xung quanh chiều lâu năm được một hình tròn trụ có bán kính đáy là R= 2 cm, độ cao là h = 3 cm